大家好,今天小编关注到一个比较有意思的话题,就是关于电脑打不开whl文件的问题,于是小编就整理了3个相关介绍电脑打不开whl文件的解答,让我们一起看看吧。
首先要确认有没有安装wheel, 有了这个包才能安装whl格式的文件。如果没有安装的话,先pip install wheel确认下载的第三方包对应的python版本和你电脑上的python版本一直哈。然后再pip install Pandas.whl最好在cmd里安装,最后重启试试。
1、首先我们进入python.org的***,选择上方的pypi。
3、然后点击Download files,右边会出现pygame的众多版本,选择适合当前python的版本下载一个即可。(cp37对应的就是python3.7版本,以此对应,小编电脑是win64位,python下载的版本是3.7.2,那么此处我选择的是pygame-1.9.4-cp37-cp37m-win_amd64这个文件)。
4、下载之后我们把这个后缀为whl的文件放到python的pip文件目录下。
5、点击键盘win+R输入cmd打开命令提示符,我们在这里面用python的pip命令,它是python的一个包管理工具。
这个问题换个问***更好:python做图像识别的学习方法或者入门书籍有什么?
首先切记心急是吃不了热豆腐的,想要彻底明白如何做图像识别,单靠跑一个demo,看一个视频是不行的。就分为三大步走吧:
模式识别打基础
建议先大致阅读模式识别和计算机视觉相关书籍。先理解图像这个信息本身,才来尝试识别。这里建议直接学习python下的opencv相关知识
机器学习来寻路
在学习深度学习理论前,建议学习浅层模型及其理论。推荐书籍《机器学习实战》,《统计学习方法》。
深度学习全升华
这里推荐斯坦福大学吴恩达的课程。可以边学边做练习,理论实践两不误。通过上面的学习之后,就可以开始手把手实战了。
开始之前,先了解一下框架的选择目前学术界主流的框架还是caffe和tensorflow,theano和torch倒没见多少人用。caffe是贾杨清大大的开山之作,虽然是用c++写的,但是同样支持matlab和python 接口。tensorflow是谷歌在caffe发布之后发布的基于python开发的深度学习框架。
可以看下“如鹏网”的《Python人脸识别》***教程,有详细的介绍。
想系统学习的话,可以看一下,作为学习的参考,讲的还是挺不错的。
有网络的地方就可以学习,根据自己时间灵活安排学习进度,有新的课程更新了,也是可以继续来学习的。
翻出我曾经写的一篇文章来介绍这个问题。
为大家带来一篇 初步使用Keras深度学习破解验证码 的文章。 当然我们这里识别的是普通验证码,是Lar***el常用的验证码库
Captcha for Lar***el 5
如下图,又5个数字字母所组成的验证码。我用PHP一共生成了5万个验证码。后面也会提供给大家
导入所需的库
这里我们还是使用Keras,底层使用Tensorflow做为底层库。
本次使用的模型是简单的卷积神经网络模型,后面也会使用更加复杂的模型
卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。它包括卷积层(alternating convolutional layer)和池层(pooling layer)。
这里介绍一种简单的人脸识别方式—face recognition,该库是python的一个人脸识别库,基于dlib深度人脸识别技术构建,识别准确率较高,下面我简单介绍一下这个库的安装和使用,实验环境win10+python3.6+pycharm5.0,主要内容如下:
1.安装face recognition,这里需要先安装dlib,face_recognition_models,之后才能安装face_recognition,下面我简单介绍一下安装过程:
安装dlib,这里建议安装编译好的dlib.whl文件,直接安装的话,可能会有错误出现:
安装face_recognition_models和face_recognition,这里可以直接pip install在线安装,也可以源码安装:
实在不会的话,可以参考一下这个教程***s://***.jianshu***/p/8296f2aac1aa。
2.安装完成后,我们就可以进行测试了,主要代码如下(这里用到了opencv进行图片的的显示,没安装的话,直接pip install opencv-python安装就行):
到此,以上就是小编对于电脑打不开whl文件的问题就介绍到这了,希望介绍关于电脑打不开whl文件的3点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。转载请注明出处:http://www.rebekkaseale.com/post/53468.html